The enzyme rhodanese can be reactivated after denaturation in guanidinium chloride.

نویسندگان

  • P M Horowitz
  • D Simon
چکیده

For the first time, the enzyme rhodanese has been refolded after denaturation in guanidinium chloride (GdmHCl). Renaturation was by either (a) direct dilution into the assay, (b) intermediate dilution into buffer, or (c) dialysis followed by concentration and centrifugation. Method (c) preferentially retained active enzyme whose specific activity was 1140 IU/mg, which fell to 898 IU/mg after 6 days. The specific activity of native enzyme is 710 IU/mg. Progress curves were linear for the dialyzed enzyme, and kinetic analysis showed it had the same Km for thiosulfate as the native enzyme, but apparently displayed a higher turnover number. Progress curves for denatured enzyme directly diluted into assay mix showed as many as three phases: a lag during which no product formed; a first order reactivation; and an apparently linear steady state. An induction period was determined by extrapolating the steady-state line to the time axis. The percent reactivation fell to 7% (t1/2 = 10 min) as the time increased between GdmHCl dilution and the start of the assay, independent of the presence of thiosulfate. The induction period, which decreased to zero as the incubation time increased, was retained in the presence of thiosulfate. There were no observable differences between native and renatured protein by electrophoresis or fluorescence spectroscopy. Previous reports of some refolding of urea-denatured rhodanese (Stellwagen, E. (1979) J. Mol. Biol. 135, 217-229) were confirmed, extended, and compared with results using GdmHCl. A working hypothesis is that rhodanese refolding involves intermediates that partition into active and inactive products. These intermediates may result from nucleation of the two rhodanese domains, which exposes hydrophobic surfaces that become the interdomain interface in the correctly folded protein.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low concentrations of guanidinium chloride expose apolar surfaces and cause differential perturbation in catalytic intermediates of rhodanese.

The conformations of sulfur-free and sulfur-containing rhodanese were followed with and without the detergent lauryl maltoside after guanidinium chloride (GdmCl) addition to 5 M to study the apparent irreversibility of denaturation. Without lauryl maltoside, sulfur-containing rhodanese denatured in a transition giving, at approximately 2.3 M GdmCl, 50% of the total denaturation induced change o...

متن کامل

Molecular dynamics studies on the denaturation of polyalanine in the presence of guanidinium chloride at low concentration

Molecular dynamic simulation is a powerful method that monitors all variations in the atomic level in explicit solvent. By this method we can calculate many chemical and biochemical properties of large scale biological systems. In this work all-atom molecular dynamics simulation of polyalanine (PA) was investigated in the presence of 0.224, 0.448, 0.673, 0.897 and 1.122 M of guanidinium chlorid...

متن کامل

Oxidative inactivation of rhodanese by hydrogen peroxide produces states that show differential reactivation.

Controlled conditions have been found that give complete reactivation and long term stabilization of rhodanese (EC 2.8.1.1) after oxidative inactivation by hydrogen peroxide. Inactivated rhodanese was completely reactivated by reductants such as thioglycolic acid (TGA) (100 mM) and dithiothreitol (DTT) (100 mM) or the substrate thiosulfate (100 mM) if these reagents were added soon after inacti...

متن کامل

Mutations of noncatalytic sulfhydryl groups influence the stability, folding, and oxidative susceptibility of rhodanese.

Mutants of rhodanese (EC 2.8.1.1) which substitute serine residues for each of the 4 cysteine residues have been studied to determine the roles of cysteines in the structure and function of the enzyme. The proteins compared in these studies were: the wild-type, C63S, C247S, C254S, C263S, C254S/C263S, and C63S/C254S/C263S. These current studies show that cysteine 247 is the only cysteine require...

متن کامل

An efficient green synthesis of some new 4H-pyrimido[2,1,b]benzimiazoles and 4H-pyrimido[2,1,b]benzothiazoles promoted by guanidinium chloride

A facile and highly efficient protocol was applied successfully to synthesize 4H-pyrimido[2,1,b]benzimiazoles and 4H-pyrimido[2,1,b]benzothiazoles through one-pot three-component cyclocondensation reactions of 2-aminobenzimidazole or 2-aminobenzothiazole with dimedone and aromatic aldehydes in the presence of guanidinium chloride under solvent-free conditions. The reactions us...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 261 30  شماره 

صفحات  -

تاریخ انتشار 1986